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Resumo Este trabalho enquadra-se no contexto da condução autónoma, e o objetivo
principal consiste na deteção e realização de uma manobra de estaciona-
mento paralelo por parte de um veículo não-holonómico à escala de 1:5,
utilizando um ambiente de programação ROS. Numa primeira fase são de-
tetados os possíveis lugares vagos com recurso a uma nuvem de pontos
proveniente de uma câmara 3D (Kinect), analizando volumes ao lado do
carro. Assim que é encontrado um lugar vazio, inicia-se o estudo de pos-
síveis trajetórias de aproximação. Estas trajetórias são compostas e são
geradas em modo offline. É escolhido o melhor caminho a seguir e, no final,
envia-se uma mensagem de comando para o veículo executar a manobra. Os
objetivos traçados foram alcançados com sucesso, uma vez que as manobras
de estacionamento foram realizadas corretamente nas condições esperadas.
Para trabalhos futuros, seria interessante migrar este algoritmo de procura
para outros veículos e tipos de manobra.





Keywords Parallel parking; Non-holonomic vehicle; ROS; Kinect; Composed trajecto-
ries.

Abstract This work fits into the context of autonomous driving, and the main goal
consists of the detection and execution of a parallel parking manoeuvre by a
1:5 scaled non-holonomic vehicle, using the ROS programming environment.
In a first stage, the possible parking locations are detected by analysing a
point cloud provided by a 3D camera (Kinect) and specifically by analysing
volumes on the side of the car. Whenever an empty place is found, the study
of possible paths of approach begins. These are composed trajectories, being
generated offline. The path to follow is evaluated, and then the commands
needed to the vehicle perform the selected path are sent. The outlined objec-
tives were successfully achieved, since parking manoeuvres were performed
correctly in the expected conditions. For future work, it would be interesting
to migrate the search algorithm to other types of vehicles and manoeuvring.
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Chapter 1

Introduction

It did not take many decades since the mass production of automobiles (1913) for compa-
nies to start thinking about autonomous driving. At the Norman Bel Geddes’s Futurama
exhibit, sponsored by General Motors at the 1939 World’s Fair, appeared the very first
idea of an autonomous vehicle - an electric car, controlled by radio and powered by
circuits embedded in the roadway [O’Toole, 2009].

Despite having an early start, the legislation didn’t allow this type of vehicles on pub-
lic roads until June of 2011, when the State of Nevada became the only place in the World
to authorize the use of autonomous cars on highways [Markoff, 2011]. The approved law
defines an autonomous vehicle as “a motor vehicle that uses artificial intelligence, sensors
and global positioning system coordinates to drive itself without the active intervention of
a human operator” [Nevada, 2011].

As it was forbidden to circulate with autonomous cars on the street, technological
developments followed another path - the creation of small driving aids. Nowadays it is
clear that there is an increasing use of electronic components in cars, which are intended
to improve the safety of vehicle’s occupants. The new trend is to incorporate long-
range sensors such as cameras or radars, to improve passengers and other cars safety
[Fossati et al., 2011].

1.1 Autonomous cars

In the second half of the twentieth century some research institutions began to develop
their prototypes of autonomous vehicles. Some of the most remarkable concepts are
presented below.

The first project to achieve success in the development of a driverless vehicle was
concluded in 1977 by the Tsukuba Mechanical Engineering Laboratory in Japan. It
tracked white street markers (on a clearly marked course) using computer vision and
achieved speeds up to 30 km/h. One of the biggest difficulties of that project was the
hardware required, since commercial computers were much slower than they are today
[Schmidhuber, 2011, Chiafulio, 2010].

In the 1980s Ernst Dickmanns and his group at the University Bundeewehr Munich
(UniBW) built robot cars using parallel computers and applying techniques such as
saccadic vision (cameras focus on the most relevant points of interest) and probabilistic
approaches (use of Kalman filters). They started the project "VaMoRs" equipping a
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4 1.Introduction

Mercedes-Benz van, table 1.1, with cameras and computers to track lane markings of an
highway, achieving speeds up to 100 km/h. This application was helped by the strong
geometric constraints available from knowledge of highways. Despite doing a safe driving,
the initial experiments took place without traffic.

Since 1994 the Robot Car "VaMoRs-P", in short "VaMP" (table 1.1), managed to
drive all by itself, at speeds up to 130 km/h. This car was equipped with a range of
sensors for autonomous navigation comprising the sense of vision and inertial sensors for
accelerations and angular rates. Road and object recognition was performed both in a
look-ahead and in a look-back region.

In 1995 Ernst Dickmanns finishes the "VITA-2" project which is a twin car of the
"VaMP". They were two autonomous vision based Mercedes 500SL (tracking up to 12
cars) which have driven more than 1000 km on the Paris multi-lane ring reaching speeds
of 130 km/h, automatically passing slower cars. One year later, the "VaMP" Mercedes
drove from Munich to Copenhagen and back (more than 1600 km) exceeding speeds of 170
km/h and completing the journey with 95% of autonomous driving [Schmidhuber, 2011,
Chiafulio, 2010, Aloimonos, 1997].

In 1995 began the ‘No Hands Across America’ project. During this tour of America,
which was sponsored by Delco Electronics, AssistWare Technology, and Carnegie Mellon
University, two researchers drove more than 4000 km with an autonomous vehicle, the
Navlab 5 (table 1.1), which uses video images, to determine the location of the road
ahead, and GPS/gyroscope information to estimate the current position. The appropriate
steering position was calculated using all the data received from the sensors. One of the
project’s limitations was the need to humanly operate the throttle and brake pedals
[Schmidhuber, 2011, Chiafulio, 2010, Jochem et al., 1995].

In the late 90s an Italian project (ARGO) modified a car, a Lancia Thema 2000 (ta-
ble 1.1), which could follow the white marks in a highway. The vehicle was equipped with
two black-and-white video cameras. The images acquired by the cameras were analysed
in real-time and the results of the processing were used to drive an actuator mounted
onto the steering wheel, which was the only fully autonomous component of the car.
However, this car was very important on the path of autonomous driving, because of the
use of low-cost components [Schmidhuber, 2011, Chiafulio, 2010, Bertozzi et al., 1998].

The year of 2005 was the debut of the DARPA Grand Challenge, which is “(...) a field
test intended to accelerate research and development in autonomous ground vehicles that
will help save American lives on the battlefield.” [Darpa, 2007]. The Grand Challenge
is not limited to college students. It brings together organizations from the industry
to backyard inventors who are looking for a technological challenge. The course took
place in the desert and had a large amount of GPS points to follow [Schmidhuber, 2011,
Chiafulio, 2010]. The large majority of participants used new forms of perception of the
external environment, such as LiDAR systems, which can provide a very accurate 3D
map of the surrounding region. The winner of the competition was the ‘Stanley’ car
(table 1.1) from the Stanford University.

In 2006 began the ELROB (European Land Robot Trial) which is not a competition,
but a pure demonstration of what European robotics is able to achieve today. The EL-
ROB is an annual event and alternates between a military and a civilian focus each year.
This competition brings great benefits to the development of algorithms for navigation
and perception, because the circuits have obstacles that were not known initially (the
track is maintained secret until the day of the event) [Schmidhuber, 2011, Chiafulio, 2010,
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1.Introduction 5

Schneider, 2012].

The DARPA Challenge returned in 2007 now with the name of “DARPA Urban
Challenge”. This time the autonomous vehicles must run trough an urban environment
respecting traffic signals. The competition was won by Carnegie Mellon University (ta-
ble 1.1).The sensors began to be more elegant, and some of the semi-autonomous vehicle
characteristics started to be included by some motor companies like Audi, Volvo and
GM. [Schmidhuber, 2011, Chiafulio, 2010].

Table 1.1: Autonomous cars achievements through the years

Year Project Achievement Image

1980s VaMoRs Track road markers on highway

[VaMoRs, 2012]

1994 VaMoRs-P Road and objects recognition

[Behringer, 2007]

1995 Navlab 5
4000 km with autonomous

[NavLab, 2012] steering-wheel control

1998 Argo
Autonomous driving using

[Vislab, 2009] low-cost components

2005 Stanley Champion of the 1st Darpa event

[Hudson, 2008]

2007 Tartan Champion of the Urban Darpa

[Tartan, 2012]

2010 Google car First legal autonomous car

[Ackerman, 2010]
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Most recently Google showed the world its vision of what an autonomous car is
(table 1.1). They took a normal Toyota Prius and assemble on it a LiDAR sensor (a
Velodyne), some radars, a camera, a GPS and IMU, and a speed encoder fixed to the
rear wheel. They manage to navigate autonomously in several occasions, using the maps
provided by Google maps. Nowadays, this car is the only one in the World which is legal
to be autonomously driven, in the State of Nevada.

1.2 The parking manoeuvre

Over the years, the growth of metropolitan areas has led to an exponential increase on
the number of cars and consequently to a decrease on the available parking spaces.

From all the types of parking manoeuvres, parallel parking is the one that best
optimizes the available space on the street, but also the most difficult to achieve. Driving
forward into a parking space on the side of a road is usually not possible. The driver
should reverse into the spot to take advantage of a single empty space.

Because of all of that, the parking manoeuvre is something that worries many people,
not only for its complexity but also for the need to be done quickly to prevent the
formation of traffic jams. The car is the principal responsible for this complexity because
it is a non-holomic system (figure 1.1) where the number of control commands available
is less than the number of coordinates that represents its position and orientation. Here
the final state of the system depends on the intermediate values of its trajectory through
the space. So, there are positions which are reachable by holonomic systems, but which
are not achievable by non-holonomic ones in the presence of obstacles.

Figure 1.1: Non-holonomic model of a car

In 1934 was presented the first prototype of a vehicle with an easy parallel parking
system (figure 1.2). That model consisted on the raise of the vehicle with four hy-
draulic jacks with wheels that allowed the car to move sideways to fit on the available
space. Despite the great technological advance presented this model was never produced
[Brown, 1934].

Joel Filipe Pereira Master thesis



1.Introduction 7

Figure 1.2: First easy parallel parking prototype [Brown, 1934]

The first vehicle to be able to do a parallel parking without human intervention was
developed at INRIA (Inventeurs du monde numérique, France) in the 90s. The car was
an electric Ligier model equipped with sonars at the front and rear bumpers to measure
distances (figure 1.3). It was possible to drive the car until the appearance of a row of
parked cars. Then, the turn of a switch put the car in automatic mode making it move
forward and looking for empty spaces with the help of the sonars. If a spot is found,
a computer calculates all the distances required and send information to the electric
motors (engine and steering wheel) to perform the manoeuvres. This project allows the
car to leave the parking lot automatically too, but all the movements were limited to flat
ground [INRIA, 1998].

In 2000 this project was extended to the perpendicular parking manoeuvre, but the
car employed a LiDAR system to sense the surrounding space.

Figure 1.3: Inria auto parking car [Paromtchik, 2012]

Nowadays, car brands have been investing large amounts of money to develop elec-
tronic components to aid the driver in parking manoeuvres. Systems that go from the
parking spot detection to the most advanced ones that control the steering wheel on the
parking manoeuvre have been released in the past few years.
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1.3 The ATLAS project

The ATLAS project begun in 2003 in the group of Automation and Robotics from the
Department of Mechanical Engineering of the University of Aveiro. The main goal of
the project was the development of advance sensing and active systems to implement
in mobile robots which were created to participate at Autonomous Driving competition
(AD) taking place at Portuguese Robotics Open [FNR, 2012].

The AD represents a technical challenge, in which autonomous robots must travel
along a road like scenario, which is composed of several visual patterns (figure 1.4). This
contest is divided in 3 stages, of increasing complexity. The fastest robot to complete
the course is the winner. Time penalties are given when robots run of the road, bump
into obstacles or disrespect traffic signs.

Figure 1.4: Autonomous driving competition track

The first robot of the Atlas series (figure 1.5) was based on an aluminium frame
with two wood layers. It has a mechanical differential to provide traction and only one
webcam looking at a v-shape mirror to allow the entire visualization of the sides of the
road.

Figure 1.5: First atlas robot prototype
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The next prototype to be made was the ATLAS 2000 (figure 1.6(a)) a 1:4 scale model
used by model makers to achieve a similar relation to a common car. In 2006 the ATLAS
team won for the first time the AD competition with this car, repeating the victory in
2007. Several upgrades were carried out to obtain better performances from the robot.

In 2008 a new robot was developed, the AtlasMV (figure 1.6(b)), to improve the
performances of its predecessor. That robot was designed to be smaller (1:5), lighter and
faster. New steering control mechanisms, pneumatic braking systems (later replaced by
hydraulic brakes) and active perception unit were developed.

(a) ATLAS 2000 (b) AtlasMV

Figure 1.6: Autonomous driving competition champions

Nowadays the Atlas group is evolving to deal with real road scenarios. To achieve
this objective, a full sized prototype (1998 Ford Escort), the ATLASCAR 1 (figure 1.7),
was equipped with several state of the art equipment. A 200A alternator, a 3000W
inverter, lasers sensors, a stereo camera, a IMU, a GPS, among others [ATLAS, 2011,
Santos et al., 2010].

(a) Atlascar 1 front-view (b) Atlascar 1 rear-view

Figure 1.7: Atlascar 1 - The first full scale prototype [ATLAS, 2011]

1.4 The Robot Operating System

“ROS (Robot Operating System) provides libraries and tools to help software developers
create robot applications [ROS, 2012]”.
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It provides services that are available on an operating system such as hardware ab-
straction, low-level device control functionality and message passing and packages man-
agement.

To fully understand the ROS philosophy it should be noted that it has three levels
of concepts. The filesystem, the computation graph and the community.

The filesystem is composed by the resources found on disk, such as:

• Packages - the unit of ROS organization. They may contain ROS runtime processes
(nodes), libraries, data-sets, etc.

• Manifests - provide information about a package, like the library dependencies and
compiler flags.

• Stacks - a collection of packages.

• Message types - define data structures to the messages sent in ROS.

The computation graph (figure 1.8) represents the network of ROS processes. There
are a few computation concepts:

• Nodes - as ROS is designed to be modular, nodes are processes that perform com-
putation.

• Master - it provides names registrations and lookup for the rest of computation
graphs.

• Messages - are a simple data structure which allows communication between nodes.

• Topic - is the name used to identify the concept of the message.

• Bags - are the format to save and playback ROS messages data.

ROS Topic

node node

Package

Service invocation

Subscription Publication

Figure 1.8: ROS - simple network of process

The ROS community allows the exchange of stacks, packages and knowledge between
the global users.

These characteristics turn ROS into a good platform to develop code. However, ROS
currently only runs on Unix-based platforms.
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1.5 Objectives

Due to the great importance that has been given to the autonomous parking, the primary
objective of this thesis is on the programming and implementation of that manoeuvre
into an autonomous driving vehicle, the ATLASCAR 1.

Conducting a parking manoeuvre requires making two fundamental tasks, the first is
the search for an empty space where to park the car and the second one consists of the
approach to the required final position of the vehicle.

1.5.1 Parking spot detection

To begin the search for a parking place, it is very important to know first what can be
considered an empty spot. Humans encounter locations to park the car in many different
situations. However, it is very difficult to ‘tell’ a machine what are all the parking
possibilities, since they are endless. So, this thesis must cover only the most difficult
parking manoeuvre, which is the parallel one (due to the non-holonomic nature of the
vehicle).

The information about the surrounding environment should be given by a Kinect®

sensor (figure 1.9) not only because it is a new type of hardware present on the laboratory,
but also because of the huge acceptance that this sensor has taken on the researchers
community and the big precision/price ratio.

Figure 1.9: Kinect® camera for Xbox 360

The selection of the parking space must be variable in accordance to the vehicle
dimensions and mechanical restrictions keeping always in mind that the robot is a non-
holonomic vehicle in a world with some obstacles and traffic rules.

One last thing to have in mind, is that another project related to the ATLASCAR
prototype is being developed to allow the automatic actuation of the gearbox (once the
original car transmission is manual), so it may be necessary to operate another navigation
robot of the laboratory (e.g. the AtlasMV) on a smaller scale scenario.

1.5.2 Planning the parking manoeuvre

After the parking spot has been detected and selected, an algorithm must generate some
approaching trajectories to achieve the desired coordinates and orientation. Those tra-
jectories must assume a complex form, which means that the vehicle may change its
turning angle while moving forward or backwards.
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12 1.Introduction

The choice of one trajectory to follow should be studied in another algorithm because
of the importance to complete the manoeuvre without collisions and by the shortest path,
always having in consideration the non-holonomic nature of the model.

After all, and if the program assumes that there is an empty spot which is reachable,
a message should be sent to the low level controls of the robot so it can follow the
programmed path.

Summing up, the entire process can be outlined by the scheme presented in figure 1.10.

3D sensor
(Kinect)

Point Cloud

treatment

Empty spot

detection

Propose

multiple paths

Choose

one path

Send
control

message to
the robot

Spot detection
Approach
manoeuvre

Figure 1.10: Scheme of the programming procedure

1.5.3 ROS utilization

This thesis must be done using the ROS environment not only because of all the li-
braries, drivers and packages existing, but also because the Laboratory of Automation
and Robotics was at the time migrating all of its code to that platform. All of the work
should be done not only to satisfy a single task, but also to be useful to the community
of researchers of the laboratory.
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Chapter 2

State of the Art

2.1 Perception of the external environment

Since its emergence, autonomous vehicles make use of perception systems. The sur-
rounding environment and the state of the car are sensed by the use of techniques such
as computer vision, LiDAR, radar or GPS/INS.

2.1.1 Computer Vision

“The goal of computer vision is to make useful decisions about real physical objects and
scenes based on sensed images [Shapiro and Stockman, 2000]”.

Many of the activities performed by human beings in day-to-day would not be possible
without the use of vision, so it becomes clear why the first prototypes of autonomous
driving cars used computer vision to detect obstacles and the road.

From the camera, with the information gathered, there is a path to follow, as shown
in figure 2.1.

Image
capture

Sense

the surrounding

environment

Encode

the information

Represent

information

to store

Algorithms

applied to image

Figure 2.1: Camera information path

One of the techniques applied on autonomous vehicles consists of the use of a stereo
camera (or two cameras) which generates a stereo pair of images (figure 2.2). In those
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14 2.State of the Art

two images it is possible to identify pairs of corresponding points. Those points allow the
calculation of the distance between the projected point in the three-dimensional world
and the recording cameras [Klette and Liu, 2008].

(a) Left (b) Right

Figure 2.2: Stereo pair of images [Klette and Liu, 2008]

Another technique consists of the analysis of a video sequence (multiple frames).
Motion estimation for these sequences should provide information about movements of
objects for each sequence, identifying possible conflict paths. By applying several filters
(such as Canny edge detector) to the image sequence it becomes possible to identify
obstacles and the road in different positions through the time. This allows the creation
of a vector with speed and trajectory to each object identified [Klette and Liu, 2008].

2.1.2 3D image cameras

3D image cameras work much like an ordinary camera to capture the two dimensions of
an image. To add the third dimension (which gives the depth information of the scene,
figure 2.3) there are two different methods which can be used. The time of flight imaging
(ToF) and the structured light imaging.

Figure 2.3: Kinect example of depth image

The ToF technique consists of measuring the depth of a scene quantifying the changes
that the emitted light encounters. It can be divided in two different principals:
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• Pulsed modulation - Measures distances to objects by measuring the total time
that a light pulse needs to travel to an obstacle and bounce back.

• Continuous wave modulation - Measures distances evaluating the phase of the wave
reflected from the obstacles encountered.

One example of a sensor which works with the ToF principals is the D-Imager (fig-
ure 2.4) which was announced by Panasonic in 2010.

Figure 2.4: Panasonic D-Imager sensor [Koifman, nd]

On the other hand, the structured light imaging technique consists of the projection
of a known light pattern to the scene. The distortion provoked on the patern will give
the information about the distances, figure 2.5.

Figure 2.5: Infra-red pattern emitted by the Kinect sensor [Fisher, 2012]

The Kinect, figure 1.9, which was first announced on June of 2009 under the code
name “Project Natal”, is currently the most popular of this kind of systems because of
its low price and the open nature of the communication code. The sensor specifications
are presented in table 2.1.
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Table 2.1: Kinect sensor specifications
Field of view Data stream Range

Horizontal Vertical Depth RGB min-max

57◦ 43◦
320×240 640×480

0.6-8.0 m
30 Hz 30 Hz

2.1.3 LiDAR Sensors

LiDAR - Light Detection And Ranging - (also known as LADAR) is a technology that can
measure distances to objects using infrared, visible or ultraviolet light. This technology
has several decades, yet its commercial application have only been developing in recent
years.

In this system the higher the power of the light beam the greater is the achievable
range. However, this system should compromise the power of the laser to prevent injury to
the eyes of people who may be affected [Schwarz, 2010]. Also, LiDAR has some problems
with certain weather conditions because it uses a form of light, which is easily reflected,
dispersed, and sometimes absorbed by rain or fog, resulting in loss of information.

The basic elements of a LIDAR system (figure 2.6) are a laser scanner, a rotating
mirror and a cooling system. The scanner is designed to record the time that the laser
pulse takes to be reflected and return since it was emitted. The rotating mirror causes
the laser beam to disperse through an angle which allows the construction of a 2D map.

By adding another degree of freedom (e.g. rotation axis, figure 2.7) to the LiDAR sys-
tem, it becomes possible to obtain a three dimensional representation of the surrounding
environment.

(a) LiDAR System components (b) LiDAR sensor - Sick
S3000 [Sick, 2012]

Figure 2.6: LiDAR system
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Figure 2.7: Sick LiDAR system with a rotating axis [Matos, 2003]

2.1.4 Radars

Today, some cars are equipped with sensors that measure the distance up to other vehicles
or large objects in front of them.

Automotive radar sensors are less expensive and still offer the advantages of microwave-
based sensing with respect to laser sensors and video cameras [Rohling, 2008].

There are two primary methods of measuring distances using radar:

• Direct propagation - consists of the measurement of the delay associated with
the emission and reception of the signal. This delay is function of the speed of
radio waves and its period.

• Indirect propagation - also known as FMCW (Frequency Modulated Continuous
Wave), consists of the emission of a modulated frequency. The difference between
the emitted and received frequency can be used to directly determine the distance
as well as the relative speed of the object.

The main applications for the automotive radars can be divided in three main groups,
as shown in figure 2.8.

Radar

Comfort Control Safety

Figure 2.8: Automotive Radar applications

• Comfort - This area is ensured by parking aid sensors (which avoid the need of
drilling holes in the bumpers) and blind spot warning system.

• Control - The active cruise control (ACC) is similar to a regular cruise control,
but it verifies if there is any slower car in front of the vehicle, and regulates the
travelling speed.
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• Safety - If the radar sensors detect an eminent collision (Closing Velocity Sensing)
a signal is sent to the vehicle control system to deploy some safety features (like
the seat belt pre-tensioners).

2.1.5 Ultrasonic Sensors

Ultrasound is an acoustic wave with a frequency beyond human hearing (more than 20
kHz) and its propagation speed (approximately 340 m/s) is slower than light or radio
waves, which allows measurements using low speed signal processing.

Ultrasonic sensors are used to determine the distance or direction of an object from
the time the waveform takes to make a round trip to the target. The range of a sensor of
this type is much smaller than that of a LiDAR system, so their use is greater in short-
range applications, such as in parking assistance systems (figure 2.9). In these systems,
sensors in the front and rear bumpers emit ultrasonic signals that are reflected by an
obstacle in the range of detection. Traces of the reflected ultrasound are received by the
sensors and their travel time is measured, calculating then the distance to the obstacle
[Hikita, 2010].

Figure 2.9: Ultrasonic parking sensors [Hikita, 2010]

2.1.6 GPS and INS

Driverless vehicles require a very precise information about its position, so they use a
system which works similarly to the scheme shown in figure 2.10.

Navigation
Unit

GPS INS

GPS data loss

INS growing errors

Figure 2.10: Operation of the navigation unit
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Most navigation systems, these days, depend on the availability of information from
their GPS coordinates to estimate the position of the vehicle. GPS satellites transmit
information to receivers and, through the use of triangulation, the exact position of the
user is estimated. Despite being very accurate, it is common that the GPS information
is not reliable, because there can be loss of data (in tunnels or near high buildings).
To overcome this loss of signal is used a INS (Inertial Navigation System) which uses
accelerometers and gyroscopes to check changes in the position of the vehicle at a certain
period of time. However, the GPS is very useful to correct the growing errors of the INS.
So, both sensors can work in a single way, but their results are better if working together
[Baker et al., 2006].

2.2 Autonomous parking

In recent times there have been many brands of automobiles that released to the market
mechanisms to help the parking manoeuvre, since the technology is still expensive and
not very reliable and the law does not allow fully autonomous parking.

It began with the use of ultrasonic sensors which detected the proximity of vehicles
from the front and rear bumpers of the car which was performing the parking manoeuvre.

Later, ultrasonic sensors that warned the driver if there was a parking space big
enough to perform the manoeuvre safely were introduced (figure 2.11). After the intro-
duction of this system appeared a mechanism that gave the driver the instructions about
the direction that the steering-wheel should have at every moment. In vehicles which
have electric powered direction, the steering-wheel may even be controlled independently,
letting the driver control only the pedals.

Figure 2.11: Bosch parking space detector system [Bosch, 2011]

These systems are virtually equal in all vehicles, being the Lexus LS460 (figure 2.12)
the first production vehicle to be presented with a semi-autonomous parking system (the
Lexus Park Assist). After this one, car brands like Toyota, Mercedes, Ford among others,
presented their own solution (all of them very similar).
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Figure 2.12: Lexus LS460 parking itself [AutomotiveAdicts, 2006]

All systems developed to date have encountered problems when the car does not meet
the pre-programmed situations. For example, when there is a car parked in second row,
or when there are pedestrians near the side-walk.

The need for perfect conditions make it nearly impossible to have a reliable self-
parking system.
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Chapter 3

Parking spot detection

Humans look for an empty parking space with a certain logic and criteria which is hard to
‘teach’ to a machine. So, in order to programme an autonomous parking spot detector,
some simplifications should be done. This part of the thesis will describe the paths
followed to allow the search for open spaces to park a robotic car. Some of the code
made for this purpose will appear in a yellow shaded rectangle with an explanation at
the bottom.

3.1 Analysis of the parking spot and vehicle

3.1.1 Parking spot definition

The first thing to be done when developing a parking spot detector algorithm is the
definition of what a parking space is. There are several types of parking situations, like
parallel, perpendicular, angled, among others. From all the kinds of manoeuvres the
most difficult one to be done quickly and in safe conditions (due to the non-holonomic
characteristics of car-like vehicles) is the parallel parking.

For those reasons, the chosen parking approach method to be done autonomously is
the parallel manoeuvre.

3.1.2 Used vehicle

As explained on section 1.5.1, the work developed on this thesis must be inserted on
the Atlascar global project. However, the vehicle used on that project was not ready
(until the present date) to operate the gear box autonomously, so it became necessary to
apply the parking algorithm to a robotic vehicle available at the laboratory, the AtlasMV,
which is a 1:5 scale model of a road vehicle.

The code developed should be generic enough to allow its use on different kind of
vehicles with simple and quick modifications. Due to that, the migration of the code to
a full scale model (the Atlascar) should be pretty easy and will be explained in each part
of the code.

3.1.3 Search method

The surrounding environment is perceived by a point cloud which, in this case, is gen-
erated by a Kinect sensor. The parking space coordinates (figure 3.1) are obtained by
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treating the information which comes from the cloud generated.

Figure 3.1: Empty parking spot coordinates

To this type of parking space there is only one limitation: the parking spot must be
always preceded by another parked car (or object). This is due to the fact that it is very
difficult for a machine to realise what a parking space is. So, on the search zone, the
algorithm only considers a parking space if there is another vehicle behind that place.

3.2 Point cloud reconstruction

In order to reconstruct the external environment it was necessary to build some hardware
and code a few ROS packages. Those processes are explained on the following subsections.

3.2.1 Kinect assembly

The Kinect sensor was not built to operate in outdoor conditions, since when it is exposed
to direct sunlight the infrared sensor becomes saturated. As consequence, there is no
information about the depth of the scene exposed. Due to that, the use of the Kinect
sensor on the Atlascar vehicle will be very limited. Only in low light conditions (e.g.
cloudy weather or at night) this sensor will provide an accurate point cloud information.
However, the navigation should not be limited by the weather, so in non favourable
conditions to the Kinect, the point cloud should be provided by another sensor, like the
stereo camera or lasers.

The AtlasMV vehicle is an indoor robot, so the use of the Kinect is perfectly allowed.
To receive the point cloud provided by this sensor it was used an existent driver on the
ROS repository, the openni_kinect.

As it was said on section 2.1, this camera has a range of 0.6 to 8.0 meters when
measuring the depth of a scene. In figure 3.2 it can be seen that the closest cone to
the camera is not perceived by the depth sensor and it generates a lack of information
projection shadow.
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(a) Point cloud minimum range limitation (b) Top view of mini-
mum range test

Figure 3.2: Kinect test of minimum range

In order to maximize the use of the optimal range of the camera and to allow the
search for parking spaces at a reduced distance from the line of parked cars, the Kinect
was mounted on the right side of the vehicle and facing the left side (figure 3.3). So, the
parking manoeuvre performed by this vehicle will be done following the left side of the
road and not the right, like most of the countries legislation assumes.

Figure 3.3: Kinect mounting position

Because of the chosen mounting position and the limited field of view of the camera
there would be hidden point cloud information. To overcome that loss, an adjustable
mounting device was built. This device can be regulated in height and in two different
angles (figure 3.4) in order not only to make the parking spot search more accurate, but
also to allow different utilizations of the sensor in future works.
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(a) Kinect support (b) Rear view of the
mounted support

Figure 3.4: Device constructed to accommodate the Kinect sensor

After the Kinect assembly on the mounting device and posterior fixation to the At-
lasMV robot, it was needed to define the position of the camera frame in relation to
the one of the car. It was made by a ROS node which is responsible to publish the
transformation between frames.

Code section 3.1: Transformation publisher
#inc l ude <ros / ros . h>
#inc l ude <t f / trans form_broadcaster . h>
#inc l ude <std_msgs /Float64 . h>
#inc l ude <math . h>

in t main ( i n t argc , char ∗∗ argv )
{

ros : : init ( argc , argv , "pub_transformations " ) ;
ros : : NodeHandle n ;
tf : : TransformBroadcaster broadcaster ;
ros : : Rate r (10) ;

f l o a t alpha =(38.0) ∗( M_PI /180) ; // the angle o f the camera
tf : : Transform transform ( btMatrix3x3 (0 ,−1 ,0 , cos ( alpha ) , 0 , sin ( alpha ) , −sin (←֓

alpha ) , 0 , cos ( alpha ) ) ,
btVector3 ( 0 . 236 , −0.05 , 0 . 68 ) ) ;

whi l e ( n . ok ( ) )
{

broadcaster . sendTransform ( tf : : StampedTransform ( transform , ros : : Time : : now ( )←֓
, "/vehicle_odometry " , "/openni_camera " ) ) ;

r . sleep ( ) ;
ros : : spinOnce ( ) ;

}
}

The first thing which is done in this piece of code is the variable initialization. The
ROS node is called pub_transformations, and there is a broadcaster of transformations
called broadcaster.

After the determination of the tilt angle of the camera, which may be done using
the ROS package kinect_aux, the transformation matrices were defined. The matrices
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correspondent to the rotation (equation 3.1) and distances between frames (equation 3.2)
are calculated by replacing the values of the angles and distances in the correspondent
place.

Rot =





cos θ − sin θ cosα sin θ sinα
sin θ cos θ cosα − cos θ sinα
0 sinα cosα



 (3.1)

∆r =





∆x
∆y
∆z



 (3.2)

In the present case (figure 3.5), the matrices parameters are:

• θ = −π/2 rad

• α = (38.0) ∗ (π/180) rad

• ∆x = 0.236 m

• ∆y = −0.05 m

• ∆z = 0.68 m

Figure 3.5: Final assembly of the sensor

After the definition of the transformation to broadcast (named transform), composed
by a 3×3 rotation matrix and a 3×1 ∆r vector, a while loop start to broadcast the trans-
formation between the vehicle_odometry (center of the rear axle) and the openni_camera
(center of the kinect sensor) frames. The last two lines of cycle are responsible to keep
the loop at a rate of 10 Hz.
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To migrate this piece of code to the Atlascar vehicle the only part which needs to
be changed is the transformation matrix that should assume values measured after the
kinect assembly on the car.

3.2.2 Frequency modulator

The openni_kinect package available on ROS repository publishes the point cloud infor-
mation at a relatively high rate. Later this became undesirable when other process were
in execution in the same processor. So another node was created, responsible to receive
the point clouds from the openni_kinect and publish them back, but at a slower rate.

Code section 3.2: Kinect point cloud re-publisher
( . . . )
void conversion ( const sensor_msgs : : PointCloud2ConstPtr & pcmsg_in )
{

pcl : : PointCloud<pcl : : PointXYZ> pc_cut ;
pcl : : PointCloud<pcl : : PointXYZ> processed_pc ;
sensor_msgs : : PointCloud2 pcmsg_out ;

pcl : : fromROSMsg (∗ pcmsg_in , pc_cut ) ;
pc_cut . header . frame_id=pcmsg_in−>header . frame_id ;
f o r ( i n t i=0;i<( in t ) pc_cut . points . size ( ) ; i++)
{

i f ( pc_cut . points [ i ] . z>0.6 && pc_cut . points [ i ] . z<1.5)
processed_pc . push_back ( pc_cut . points [ i ] ) ;

}
processed_pc . header . frame_id=pc_cut . header . frame_id ;
pcl : : toROSMsg ( processed_pc , pcmsg_out ) ;

pcmsg_out . header . stamp=pcmsg_in−>header . stamp ;
cloud_pub . publish ( pcmsg_out ) ;

}

i n t main ( i n t argc , char ∗∗argv )
{

ros : : init ( argc , argv , "kinect_freq_mod" ) ;
ros : : NodeHandle n ;
ros : : Rate loop_rate (10) ;
( . . . )
// Subscr ibe o f the Kinect point c loud message
ros : : Subscriber sub = n . subscribe ( "/point_cloud_from_kinect " , 1 , conversion ) ;
// Advert i s e o f the resutant point c loud
cloud_pub = n . advertise<sensor_msgs : : PointCloud2 >("/point_cloud_input" , 1) ;

whi l e ( ros : : ok ( ) )
{

ros : : spinOnce ( ) ;
loop_rate . sleep ( ) ;

}
re turn 0 ;

}

At the main function, this code subscribes a point cloud from the Kinect, and executes
a callback each time a message is received. The callback is responsible to reduce the
amount of points existent in the original point cloud. This is achieved by confining the
depth information of the message. In this case, only the points which are between 0.6
and 1.5 meters in the depth axis are considered acceptable, since the other points do not
bring any additional information to the parking spot localization.
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In the “while” cycle the new point cloud is published at a rate defined by the ros::Rate,
which in this case is 10 Hz.

To reduce even more the size of the message transmitted, only the geometric parame-
ters of the point cloud (x, y and z) are sent. The Kinect also provides colour information
about the scene, but to detect volumes it is not necessary (figure 3.6).

(a) Point cloud XYZRGB (b) Point cloud XYZ

Figure 3.6: Comparison between point cloud XYZRGB and point cloud XYZ

To migrate this code to another vehicle, the only thing which needs changes is the
callback. There, the distances which limits the depth of the point cloud are optimized to
the use on the AtlasMV vehicle. New values should be defined to use on another vehicle.

3.2.3 Point cloud accumulator

The Kinect horizontal field of view does not allow the search for an empty parking space
at the normal search distance (figure 3.7). To overcome this limitation there were two
possible solutions. The first one consisted of a search for a parking space made at a bigger
distance, however this may be impossible due to the traffic regulations restrictions. The
other solution assumed a reconstruction of the point cloud (figure 3.8). To proceed to the
reconstructions the only two things that are needed are the point cloud and the odometry
information of the vehicle (the vehicle position on the global frame at each time).

Figure 3.7: Kinect horizontal field of view
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Figure 3.8: Reconstructed point cloud with odometry information

There was already a C++ class developed in the Laboratory of Automation and
Robotics server which was responsible to accumulate points to a certain frame of accu-
mulation. To use that class it was just necessary to include the node on the launch file
(file which manages the processes to launch).

Code section 3.3: Nodelet launch file
<launch>
( . . . )

<node name="pc_accumulation_nodelet" pkg="pc_accumulation " type="←֓
pc_accumulation_nodelet" >

<param name="distance_from " value="2.5 " type="double "/>
<param name="timer_value " value=" 0.1 " type="double "/>
<param name="acc_frame " value="/world"/>
<param name="voxe l_s i ze " value="0.03 " type="double "/>
<param name="removed_from" value="/vehicle_odometry "/>
<param name="odometry_topic " value="/atlasmv/base /odometry "/>
<remap from="/po intc l oud0 " to="/point_cloud_input"/>

</node>
</launch>

In the pc_accumulation node there are some parameters which need to be defined.

• “distance_from” - means the distance accumulated in meters.

• “time_value” - is the period of the message.

• “acc_frame” - is the accumulation frame (where the point cloud must be recon-
structed).

• “removed_from” - is the frame of the odometry message.

This node also provides a tool which can reduce the point cloud density of the resul-
tant accumulated point cloud, the voxel_size. In this case, a voxel grid of 0.03 meters
means that each point is separated from the others by at least 0.03 meters.

The parameters that mandatorily need to be changed when migrating the code are
the odometry message, the frame of accumulation and the accumulated distance.

3.3 Volume detection

The volume detection is made by the use of functions which provide informations about
the presence or not of points at a certain zone. All the processes and code are shown in
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the next subsections.

3.3.1 Points from volume extraction

To verify if there were any points from a point cloud at a certain region of space it was
created a C++ class which, with some input parameters, determines the existence or
non-existence of points. That class assumes that the input parameters (figure 3.9) are:

• Convex hull point cloud - Those points (at least three) define the geometric figure
of the solid which will be extruded. This solid is in fact the region of search for
points.

• Positive/negative offset - It defines the height of the extruded solid. The positive
offset indicates the amount of positive extrusion, and the negative do the opposite.

• Zone flag - This flag is very important because it establishes if the search zone is
inside the convex hull (negative flag) or outside it (positive flag).

Figure 3.9: Points from volume input parameters

Code section 3.4: Convex hull extraction
( . . . )
pcl : : ExtractPolygonalPrismData<T> epp ;
( . . . )

pcl : : ExtractIndices<T> extract ; //Creates the ex t ra c t i on ob j e c t
pcl : : PointIndices : : Ptr indices ;
indices . reset ( ) ;
indices = pcl : : PointIndices : : Ptr (new pcl : : PointIndices ) ;

( . . . )

i f ( ( i n t ) indices−>indices . size ( ) !=0)
{

extract . setInputCloud ( pc_in . makeShared ( ) ) ;
extract . setIndices ( indices ) ;
extract . setNegative ( flag_in_out ) ;
extract . filter ( pc_in_volume ) ;

}
( . . . )
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On the C++ class code it is defined a polygonal prism data of extraction (epp) which
is responsible to verify if the points from the point cloud in study are inside or outside
the limits of search. The indices of the points which satisfies the condition are returned
and indicate the points from the point cloud which are in the required area.

One of the public parameters of the class which may be obtained is a point cloud
containing only the points inside (or outside if pretended) the defined convex hull (fig-
ure 3.10).

Figure 3.10: Green points inside a convex hull

3.3.2 Empty volume detection

This is the section responsible for the main execution of the package “parking_detection”,
which looks for empty volumes at a certain search zone. Thanks to the classes and
execution nodes that were previously made, the main goal of this executer is to make all
the nodes work together.

Code section 3.5: Empty spot detector
i n t main ( i n t argc , char ∗∗argv )
{

( . . . )
tf : : TransformListener listener (n , ros : : Duration (10) ) ;
( . . . )
Publisher = n . advertise<trajectory_planner : : coordinates >("/msg_coordinates " ,←֓

1000) ;
// ______________________
// |_______Markers________|
car_pub = n . advertise<visualization_msgs : : Marker>( " car " , 0 ) ;
( . . . )
// ______________________
// |_____ConvexHulls______ |
// ConvexHull 1
convex_hull1 . header . frame_id="/vehicle_odometry " ;
pcl : : PointXYZ pt1 ;
pt1 . x = spot_length /2 + spot_length /2 ; pt1 . y= ( spot_wide + spot_distance ) + ←֓

spot_wide /2 ; pt1 . z= 0 . 0 2 ;
convex_hull1 . points . push_back ( pt1 ) ;
( . . . )
pfv . set_convex_hull ( convex_hull1 ) ;
( . . . )
// ______________________
// |______PointCloud______ |
//Point Cloud pub l i c a t i on s
cloud_pub = n . advertise<sensor_msgs : : PointCloud2 >("/pc_ahead" , 1) ;

Joel Filipe Pereira Master thesis



3.Parking spot detection 33

( . . . )
// ______________________
// |______PCL subscr ._____|
// Creates a ROS subs c r i b e r f o r the input point c loud
ros : : Subscriber sub = n . subscribe ( "/pc_out_pointcloud " , 1 , cloud_cb ) ;

ros : : Rate loop_rate (30) ;
ros : : spin ( ) ;

}

Initially a listener is defined and will wait for transformations information between
frames. After that it is important to initialize a publisher, which will be very useful later
to send the parking coordinates message.

There are other publishers defined to represent markers (objects drawn on rviz, which
is a visualizer from ROS). The coordinates that will define the vertices of the figure to
extrude into a convex hull are also initialized in this section of code. These points are
geometrically defined by the position of the convex hull vertices in relation of the search
vehicle (figure 3.11).

Figure 3.11: Points from convex hull coordinates

At the end, the point clouds resultant from the class “points_from_volume” appli-
cation are published. One of the last parameters is a subscriber, which runs a callback
function every time a message of type “pc_out_pointcloud ” is received.

Part of the code present in the callback is shown bellow.

Code section 3.6: Callback function
#de f i n e VEHICLE_FRAME "/vehicle_odometry "

void cloud_cb ( const sensor_msgs : : PointCloud2ConstPtr & pcmsg_in )
{

// STEP 1 : Create the point_cloud input
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pcl : : PointCloud<pcl : : PointXYZ> pc_in ;
pcl : : fromROSMsg (∗ pcmsg_in , pc_in ) ;

//STEP 2 : Query f o r the trans f ormat i on to use
tf : : StampedTransform transform ;
( . . . )

p_listener−>lookupTransform ( pcmsg_in−>header . frame_id , VEHICLE_FRAME , ←֓
ros : : Time (0) , transform ) ;

( . . . )

//STEP3 : trans form pc_in us ing the quer i ed trans form
pcl : : PointCloud<pcl : : PointXYZ> pc_transformed ;
pcl : : PointCloud<pcl : : PointXYZ> pc_ahead , pc_spot , pc_behind , pc_ground ;
pcl_ros : : transformPointCloud ( pc_in , pc_transformed , transform . inverse ( ) ) ;
pc_transformed . header . frame_id = VEHICLE_FRAME ;

// STEP 4 : Aplying the ConvexHull c l a s s
pfv . convexhull_function ( pc_transformed , 0 . 0 , −0.6 , f a l s e ) ;
pc_ahead=pfv . get_pc_in_volume ( ) ;
pc_ahead . header . frame_id = VEHICLE_FRAME ;
( . . . )

// STEP 5 : Convert to ROSMsg
sensor_msgs : : PointCloud2 pcmsg_out ;
pcl : : toROSMsg ( pc_ahead , pcmsg_out ) ;
( . . . )

// STEP 6 : Markers
visualization_msgs : : Marker marker_car ;
marker_car . header . frame_id = VEHICLE_FRAME ; // Frame name
( . . . )
marker_car . type = visualization_msgs : : Marker : : CUBE ; // Marker type
marker_car . pose . position . x = 0 . 8 / 2 ;
marker_car . pose . position . y = 0 ;
marker_car . pose . position . z = spot_high /2 ;
( . . . )

// STEP 7 : Publ i sh markers and PClouds
car_pub . publish ( marker_car ) ;
( . . . )
cloud_pub . publish ( pcmsg_out ) ;
( . . . )

}

There is a transformation applied to the point cloud in order to draw the points on
the “world” frame. After that, the class “points_from _volume” which verifies if there are
points inside a certain volume is executed. The returned point cloud is converted into a
ROS message to be published later. This callback is also responsible for the construction
of the markers which represents the convex hulls latter published.

To migrate the code to another vehicle, the changes to apply are only in the dimen-
sions of the convex hull (they must respect the new vehicle geometry), and the size of
markers, which are a representation of the convex hulls. The “_VEHICLE_FRAME_”
should be also the same of the one published by the vehicle low level.

3.3.3 Parking coordinates message

As soon as some conditions are met, a message with the parking spot coordinates (po-
sition and orientation) is send to the trajectory planner module. The conditions (fig-
ure 3.12) necessary to assume that there is a parking space are indicated on the following
items.
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Figure 3.12: Hulls of empty parking spot search

• Parking behind convex hull - This convex hull should have points in it, because it
was assumed that to found an empty parking space it is necessary first to find an
occupied zone.

• Parking space convex hull - As expected there is a zone were no points should exist.
This zone will be the parking space.

• Floor convex hull - This complementary zone determines if the ground has a certain
amount of points, because if there are holes on the ground the parking manoeuvre
may be very dangerous.

If the conditions are respected, a position message is sent.

This message contains information about the geometric position of the parking spot
and the orientation on the base frame - world (figure 3.13).

Figure 3.13: Search frames

Autonomous parking using 3D perception Joel Filipe Pereira



36 3.Parking spot detection

3.4 Possibilities of package launch

One of the advantages of ROS utilization is the possibility to organize the code in nodes
and create “launch files” which just execute some of the nodes.

In the case of the parking spot detection this may be very useful, because of the
possibility of replay some recorded situations.

3.4.1 Record data

The launch file ‘parking_detection_bagrecord.launch’ has the responsibility of launch the
necessary nodes to record a ‘bagfile’ which contain the reconstructed point cloud and the
transformations between all the frames.

Code section 3.7: Recorder launch file
<launch>

<node name="openni_node " pkg="openni_camera " type="openni_node "/>
( . . . )

<node name="kinect_freq_mod" pkg="parking_detect ion " type="kinect_freq_mod" ←֓
args="point_cloud_from_kinect :=/camera/depth/ po ints "/>

<node name="pub_transformations " pkg="parking_detect ion " type="←֓
pub_transformations " />

<node name="pc_accumulation_nodelet" pkg="pc_accumulation " type="←֓
pc_accumulation_nodelet" >

( . . . )
</node>
<node name=" reco rde r " pkg=" rosbag " type="rosbag " args=" record /←֓

pc_out_pointcloud / t f −O /home/ j o e l /bag1 . bag"/>
</launch>

3.4.2 Playback mode

If there is any bagfile stored on disk (just bagfiles recorded with the necessary informa-
tion), the launcher ‘parking_detection_bagplay.launch’ may be executed. This will treat
all the incoming data, as if it were happening at the moment. However, it will be just a
playback action.

To publish the recorded information there is a ROS node which must be used, the
‘rosbag play ’.

Code section 3.8: Playback launch file
<launch>
<node name="parking_detect ion " pkg="parking_detect ion " type="parking_detect ion " ←֓

/>
<param name="/use_sim_time " type="bool " value=" true " />

</launch>

3.4.3 Live action

The last launch file is the one responsible to perform live action. It is very similar to
the launcher used to record the information. However, on this one there is no need to
launch the last node which was only responsible to record the selected information. The
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‘parking_detection.launch’ launcher is the one to be used when executing the complete
parking manoeuvre (search, plan and execution).
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Chapter 4

Planning a manoeuvre

Planing a non-holonomic vehicle trajectory is harder than planning for an holonomic one.
This kind of mobile robots, by not being able to rotate around themselves, have positions
in space that are simply not achievable (figure 4.1). So, in order to plan a manoeuvre, it
is necessary to use some method which define the path for a car-like vehicle.

Figure 4.1: Non reachable position to a non-holonomic vehicle

4.1 Planning approaches

The very first ideas of path planning were published in the first International Joint
Conferences on Artificial Intelligence (late 60s). Nowadays there are three main families
of methods to find out the better path to follow; the ‘roadmap’, the ‘cell decomposition’
and the ‘potential field’ approaches [Laumond et al., 1997, Latombe, 1990].

4.1.1 Roadmap

A roadmap is composed by lines of free space which a robotic vehicle may follow between
obstacles (figure 4.2).
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Figure 4.2: Example of roadmap navigation lines [Morales, nd]

As soon as the roadmap is obtained, it is necessary to identify three different paths:

• 1 - From the starting point up to some point on the roadmap;

• 2 - A continuous roadmap path;

• 3 - From the roadmap up to the desired final point.

If these paths exist and are continuous, then there is a path from the initial until the
goal point. The principles to the roadmap creation may lay on different techniques, such
as visibility graphs, voronoi diagrams, freeway net and silhouette [Latombe, 1990].

4.1.2 Cell decomposition

This method consists of the sub-sampling of the navigation space in small cells, forming
the nodes of a connectivity graph. Two nodes are said connected if the cells which
represent them are adjacent to each other.

The path (channel) to follow is defined, if there are adjacent cells from the starting
point up to the goal point. An optimization algorithm is responsible to ensure that the
best possible channel is found [Latombe, 1990, Lingelbach, 2004].

4.1.3 Potential field

The potential fields are obtained by dividing the navigation scene in a small grid, and then
calculating the forces applied on the vehicle. Usually, the navigation robot is reduced to
a single point and subject to the attraction or repulsion fields. The presence of obstacles
will generate repulsion forces on the vehicle, while the goal point produces an attractive
field to the robot. The resultant ‘virtual’ force is responsible to conduct the movement
of the robot.

Despite being very efficient when compared to other methods, this technique may
lead into a non return situation if a local minima is achieved [Latombe, 1990].
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4.2 Trajectory generator

The traditional methods described on the previous section are responsible essentially to
perform path planning. Since the AtlasMV is a non-holonomic vehicle, the paths planned
should be converted into non-holonomic trajectories. After that it would be necessary to
perform the movement with some kind of control to ensure the correct execution of the
manoeuvre (complex paths would require an accurate position control).

So, in order to avoid the need for a big precision on the vehicle position estimation,
this work will make use of a simple method (based only on circumferences arcs) which is
responsible not only for the path planning but also for the execution task. This method
will count on a set of predefined typical paths, and the best one, even if not the optimal,
will be chosen. Despite the limited number of paths, this will allow a good performance
on the trajectory planning algorithm, as will be shown.

Due to the simplicity of the path to follow, there is no strong necessity to perform close
loop control, avoiding this way the need to plan alternative trajectories when following
the chosen one. However, there is an odometry information which advises the distance
travelled by the vehicle, and informs when the vehicle should turn or stop the movement.

This method must be very flexible since it may be used in other simple navigation
applications, continuing the work already started by [Oliveira et al., 2012].

The use of the term ‘trajectory’ is sometimes a language abuse, since trajectories
have not only geometric information, but also the time details of when each action or
changes on velocities happens. On the case of this thesis, there is no time information
because all the trajectory planning and execution is made in an open loop control, so
what is named here by ‘trajectory’ should be in most of the cases ‘path’. But, the most
usual name to define a route is ‘trajectory’, so the nodes and packages created will have
this name on them.

Since the analysis and planning of the trajectories demand the knowledge of the ini-
tial and the final states, the choice criteria and the actions to take [LaValle, 2006], a
large amount of trajectories is generated, followed by the study of the most adequate
one. One simple way to generate non-holonomic trajectories is by using simple geomet-
rical expressions. Those expressions were already defined on the AtlasMV navigation
module [Oliveira et al., 2012].

This section will describe the processes and equations needed to generate trajectories
for a non-holonomic vehicle using geometric equations.

4.2.1 The input file

The first thing to be done when generating a trajectory with this approach, is the creation
of two vectors which contain information about the turning angle of the vehicle and the
length of the desired trajectory. In other words, there are just two parameters to define
a trajectory, the angle of the turning wheels at each position (α angle) and the distance
travelled (arc) with that angle. Those two values need to be combined with the inter-axis
dimension of the vehicle to define the trajectory.

Obviously, the planned trajectory will be an approach to the real intended trajectory,
once the equations will only bring information about the positions of the vehicle at the
calculation points. The bigger the vector with parameters which defines the trajectory,
the most accurate to the reality the trajectory will be (figure 4.3). So it is very important
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to trade off a balance between the accuracy and the computational cost of the trajectory
generator.

(a) Trajectory generated with 5 nodes (b) Trajectory generated with 10 nodes

Figure 4.3: Circular trajectories generated with different number of nodes (segments)

The advantage of using a planned trajectory generated with more nodes (segments)
will be evident on section 4.3, where the proximity to the real trajectory is fundamental.

4.2.2 Generation on the base frame

The use of some mathematical expressions allows the prediction of a non-holonomic
vehicle’s position, knowing in advance the turning angle and the distance travelled with
this angle.

Usually, non-holonomic vehicles change direction using only one pair of wheels (front
or rear pair). The vehicle used for this thesis has front turning wheels, so the car base
frame will be the center of the rear axle.

By looking at figure 4.4 it becomes clear that the arc travelled by the vehicle with a
certain turning angle, α, has a radius, R, which may be obtained by the use of equation 4.1
[Oliveira et al., 2012].

R =
D

tanα
(4.1)

The parameter D represents the inner-axis length of the used vehicle.
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Figure 4.4: Geometric parameters of a car-like vehicle

The value of the turning angle is actually a virtual value, once the wheels do not
turn exactly the same angle. This is very usual in car-like vehicles, so in order to obtain
a single value of α, the four wheeled car should be reduced to a tricycle model with a
single front wheel.

If front wheels spinning is not desired when turning at low speeds, the vehicle should
follow a perfect example of an Ackerman model. This means that the prolongation of
a line which intersects the center of wheel turning and the point of direction actuation
should intersect also the rear axle center (figure 4.5). If it does not happen, wheel
spinning may occur because wheels would not be in a tangent line to the circle they must
describe.

(a) Supra Ackerman an-
gle

(b) True Ackerman angle (c) Sub Ackerman angle

Figure 4.5: The three different types of Ackerman steering

Knowing the value of the instantaneous center of rotation (ICR), and having informa-
tion about the distance travelled (arc) with a certain turning angle,it becomes possible
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to calculate the vehicle’s orientation (β angle) using equation 4.2 [Oliveira et al., 2012].

β =
arc

R
(4.2)

With the use of some trigonometry it is possible to determine the x, y position of the
vehicle after the movement (equation 4.3) [Oliveira et al., 2012].

[

Πx
Πy

]

=

[

R× sin β
R−R× cos β

]

(4.3)

All the position parameters (Πx, Πy, β) are defined in relation to the previous frame
of the vehicle’s localization. So it is necessary to transpose them to the global frame, by
multiplying the new points by all the previous transformations.

Code section 4.1: Frames transformations

( . . . )
f o r ( size_t i=0; i<alpha . size ( ) ; ++i )
{

( . . . )
transform . setOrigin ( tf : : Vector3 ( lx [ i ] , ly [ i ] , 0) ) ;
transform . setRotation ( tf : : createQuaternionFromRPY (0 , 0 , ltheta [ i ] ) ) ;
ltrans . push_back ( transform ) ;
( . . . )

f o r ( i n t j=i ; j>=0;−−j )
{

pcl_ros : : transformPointCloud ( ponto_teste , ponto_result , ltrans [ j ] ) ;
( . . . )
ponto_teste . points . push_back ( ponto_result . points [ 0 ] ) ;
( . . . )

}
( . . . )

}

First of all, a transformation is created by observing the local positions of the car in
relation to the frame. Then, this transformation will be applied from the last to the first
node of the trajectory recursively.

After that, it becomes possible to obtain the global coordinates of each trajectory
node using just two input vectors which contains the arc and α values (figure 4.6).
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Figure 4.6: Example of a set of trajectories - the first planned position is node 0

4.3 Manage trajectories

Since a large amount of possible trajectories is defined, it is very important to assess
which one is better to follow, maximizing the accuracy but having always in consideration
possible risks. The next subsections will describe the choice process.

4.3.1 Distance to attractor point

When studying a trajectory it is very important to have an attractor point. This point
has in fact the coordinates of the parking spot localization which are sent by the parking
detector package.

The functions responsible to calculate the trajectory distance to the attractor point
only consider the distance to the closest node. This means that the trajectory will only be
followed until the closest node, since after that the vehicle would be at a bigger distance
of the desired point.

The distance d which each node of the trajectory has to the attractor point (Ax, Ay)
is an Euclidean distance (equation 4.4).

d =
√

(Πx−Ax)2 + (Πy −Ay)2 (4.4)

Logically, the closest node will be the one which has the shortest distance to attractor
point.

To evaluate the results obtained, it is better to trust in a normalized value of the
distance (equation 4.5).

dnorm = 1−
d

∆
(4.5)

In this equation, the ∆ value is the admissible maximum distance.
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Code section 4.2: Distance to attractor point
t_func_output c_manage_trajectory : : compute_DAP ( c_trajectoryPtr& trajectory , ←֓

t_desired_coordinates& AP )
{

trajectory−>score . DAP=10e6 ;
trajectory−>closest_node=−1;

f o r ( size_t i = 0 ; i < trajectory−>x . size ( ) ; ++i )
{

double DAP_prev = sqrt ( pow ( trajectory−>x [ i ]−AP . x , 2 )+ pow ( trajectory−>y [ ←֓
i ]−AP . y , 2 ) ) ;

i f ( DAP_prev < trajectory−>score . DAP )
{

trajectory−>score . DAP = DAP_prev ;
trajectory−>closest_node = i ;

}
}
( . . . )

}

t_func_output c_manage_trajectory : : compute_trajectories_scores ( void )
{

double maximum_admissible_to_DAP =8.0;
// normal ize DAP
vt [ i]−>score . DAPnorm=1−(vt [ i]−>score . DAP ) /maximum_admissible_to_DAP ;

}

On the code there is a for loop which tests the nodes distances to the attractor
point. If the distance calculated to the current node is smaller than the ones previously
calculated it becomes the shortest distance and the node number is memorized as the
closest node.

After that the shortest distance is normalized. In this case the maximum admissible
distance is 8.0 meters, being this the only value which needs to be changed when migrating
the code to other platforms.

A score of dnorm = 1 means that the closest node is in fact coincident with the
attractor point (figure 4.7).

Figure 4.7: Distance to attractor point (DAP) on node 7 = 0

4.3.2 Angular difference

When it comes to a parking manoeuvre, it is important not only the final position (x, y)
of the vehicle, but also the orientation. Due to that it is very important to evaluate the
angular difference between the orientation that the car will have at the closest node and
the intended orientation of the parked vehicle.

The angular difference is the absolute value of the difference of the closest node angle
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and the intended one (equation 4.6).

δθ = |Πθ −Aθ| (mod π) (4.6)

Code section 4.3: Angular difference

double c_manage_trajectory : : compute_ADAP ( c_trajectoryPtr& trajectory , ←֓
t_desired_coordinates& AP , i n t i )

{
double adap=abs ( trajectory−>theta [ i ]−AP . theta ) ;
i f ( adap>M_PI )

adap=2∗M_PI−adap ;
r e turn adap ;

}

t_func_output c_manage_trajectory : : compute_trajectories_scores ( void )
{

( . . . )
// normal ize ADAP
vt [ i]−>score . ADAPnorm=1.0−(vt [ i]−>score . ADAP /( M_PI ) ) ;

}

The δθ values must be between 0 to π radians, so to normalize the angular difference
to attractor point (ADAP) it is required the use of equation 4.7.

δθnorm = 1−
δθ

π
(4.7)

If the value of δθnorm is 1 it means that the angle of the closest node is the same that
the one of the attractor point, δθ = 0, while a 0 value means that they are with an offset
of π radians, δθ = π (figure 4.8).

(a) ADAP = 1 (b) ADAP = 0

Figure 4.8: Angular difference to attractor point (ADAP)
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4.3.3 Free space

During a manoeuvre, it is very important to ensure that the execution of a trajectory
would not guide into possible collisions to obstacles. To be sure that this will never
happen a weight function was created to determine if the trajectory is in a collision route
to obstacles up to the nearest node.

A collision may be represented by the intersection of two lines. So the car contour is
drawn with four lines (approaching the vehicle to a rectangle) in each trajectory node.
If these lines intersect other obstacle lines the trajectory has at least a collision point
(figure 4.9). In the case of being in the presence of a very small obstacle (a small line),
the intersection of this line and the vehicle is ensured by a well discretized trajectory,
generating many car contour lines and consequently many collision possibilities. By doing
that, the risk of an obstacle be inside of the car contour without touching any line is
minimum.

The Laboratory of Automation and Robotics server had already a node (mtt) which
publishes obstacle lines from an input point cloud of the scene.

Figure 4.9: Collision points - yellow cylinders

Code section 4.4: Free space
// cyc l e a l l nodes un t i l the c l o s e s t node
f o r ( i n t n=0; n<= trajectory−>closest_node ; ++n )
{

( . . . )
// cyc l e a l l v e h i c l e l i n e s
f o r ( size_t l=0; l< trajectory−>v_lines [ n ] . size ( ) ; ++l )
{

// Def ine po ints from l i n e s
( . . . )
// cyc l e a l l o b s t a c l e s
f o r ( size_t o=0; o< vo . size ( ) ; ++o )
{

// cyc l e a l l l i n e s i n s i d e each ob s ta c l e
f o r ( size_t lo=1; lo< vo [ o ] . x . size ( ) ; ++lo )
{

( . . . )
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i n t ret=lineSegmentIntersection ( Ax , Ay , Bx , By , Cx , Cy , Dx , Dy ,&X , &←֓
Y ) ;

i f ( ret==DO_INTERSECT )
{

( . . . )
trajectory−>score . FS∗=0;

}
}

}
}

}

During the node execution, all vehicle lines, from the first up to the closest node, are
tested with all possible obstacles. If the return of the lineSegmentIntersection function
(already on LAR’s server) is “DO_INTERSECT” then the free space value (FS) will be
turned into 0, otherwise it will remain 1.

4.3.4 Distance to obstacles

During a trajectory execution it is not only important to know if there is a collision
or not. It is also relevant to determine the minimum distance between the vehicle and
obstacles, because a situation may occur where there is no collision but a dangerous
passing (very close) in relation to the obstacle.

The distances are measured with the Euclidean distance between the vehicle vertices
(rectangle shaped vehicle) and the points of obstacles (points which define the obstacle
lines). Here, a well discretized trajectory will be better, since the two points which form
a long line (low discretization) may not provide enough information about the closest
points of the trajectory.

Code section 4.5: Distance to obstacles
trajectory−>score . DLO = 10 . 0 ;
// cyc l e a l l nodes un t i l the c l o s e s t node
f o r ( i n t n=0; n<= trajectory−>closest_node ; ++n )
{

( . . . )
// cyc l e a l l v e h i c l e l i n e s
f o r ( size_t l=0; l< trajectory−>v_lines [ n ] . size ( ) ; ++l )
{

// Def ine po ints from l i n e s
( . . . )
// cyc l e a l l o b s t a c l e s
f o r ( size_t o=0; o< vo . size ( ) ; ++o )
{

// cyc l e a l l l i n e s i n s i d e each ob s ta c l e
f o r ( size_t lo=1; lo< vo [ o ] . x . size ( ) ; ++lo )
{

double DLOprev = sqrt ( pow ( trajectory−>v_lines [ n ] [ l ] . x [0]− vo [ o ] . x←֓
[ lo−1] ,2)+pow ( trajectory−>v_lines [ n ] [ l ] . y [0]− vo [ o ] . y [ lo←֓
−1] ,2) ) ;
i f ( trajectory−>score . DLO > DLOprev )

trajectory−>score . DLO=DLOprev ;
( . . . )

}
}

}
}

t_func_output c_manage_trajectory : : compute_trajectories_scores ( void )
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{
double maximum_admissible_to_DLO =10.0;
// normal ize DLO
vt [ i]−>score . DLOnorm=(vt [ i]−>score . DLO ) /maximum_admissible_to_DLO ;

}

On the code it is defined a value from which the distance of closest obstacle became
no longer relevant. In this case it was established to 10 meters (this parameter may
change in different situations or vehicles). During the node execution the for cycles look
for a lower value of the distance to obstacles (DLO), being the lower value the one that
is saved.

After that, the value must be normalized. This is achieved by dividing the lower
DLO value found by the maximum admissible (Φ) (equation 4.8).

DLOnorm =
DLO

Φ
(4.8)

4.3.5 Measurement function

After having defined the evaluation criteria it is necessary to choose the weights to
generate the best trajectory to follow. Those values (table 4.1) were manually optimized
to the current situation and vehicle, and must be updated if any of these two constrains
change.

Table 4.1: Trajectory evaluation weights
Parameter DAPnorm ADAPnorm DLOnorm

Weight 40% 35% 25%

The free space (FS) will represent 100% of the decision since trajectories with colli-
sions are not even considered. The trajectory score will be given by the formula present
on equation 4.9.

Score = FS × (0.40 ×DAPnorm + 0.35 ×ADAPnorm + 0.25 ×DLOnorm) (4.9)

Only trajectories with a final score higher than 75% must be considered, since the
parking manoeuvre must be something that requires some precision.

The chosen trajectory may be seen highlighted on ROS rviz, and in the case of
figure 4.10 the one to follow will be “traj 2”, since trajectory 3 (the closest one) has
collision points with an obstacle in its intermediate nodes.
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Figure 4.10: Chosen trajectory - traj 2

4.4 Trajectory execution message

As soon as a trajectory is chosen, the trajectory_planner_nodelet node send a message
with two vectors containing information about the turning angle values (α) and each
trajectory segment speed. The speed vector will be positive or negative according to the
arc value being positive or negative.

Code section 4.6: Speed modulator
#de f i n e SPEED_REQUIRED 0.25
#de f i n e SPEED_SAFETY 0.05

vector<double> set_speed_vector ( boost : : shared_ptr<c_trajectory> t )
{

vector<double> speed_setted ;
f o r ( size_t i=0;i<_NUM_NODES_ ;++i )
{

i f ( i < ( _NUM_NODES_ − 1) )
{

i f ( ( t−>arc [ i ] ) ∗( t−>arc [ i+1]) <0.0)
speed_setted . push_back ( ( t−>arc [ i ] / fabs (t−>arc [ i ] ) ) ∗SPEED_SAFETY )←֓

;
e l s e

speed_setted . push_back ( ( t−>arc [ i ] / fabs (t−>arc [ i ] ) ) ∗←֓
SPEED_REQUIRED ) ;

}
e l s e

speed_setted . push_back ( ( t−>arc [ i ] / fabs (t−>arc [ i ] ) ) ∗ SPEED_REQUIRED ) ;
}
re turn speed_setted ;

}

The vehicle will travel at a required speed (0.25 m/s), positive or negative. However,
there is a situation when the vehicle must travel at a safety speed (0.05 m/s). This
happens when the product of two consecutive arc values is negative, meaning that there
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will be a change from reverse to forward (or the opposite) movement. So to avoid
sudden accelerations the trajectory between this two nodes is travelled at lower speeds
(figure 4.11).

Figure 4.11: Speed modulation on forward/reverse movement

The trajectory_executive node is responsible to send the command message to the
low level control of the vehicle.

Code section 4.7: Command message
void send_command_message ( i n t current_node )
{

i f ( current_node != −1 && stat i c_cas t <int >(info . alpha . size ( ) )>current_node )
{

command . dir=info . alpha [ current_node ] ;
command . speed= info . speed [ current_node ] ;
command . lifetime=INFINITY ;
( . . . )

}
e l s e
{

command . dir=0.0;
command . speed =0.0;
command . lifetime=INFINITY ;
( . . . )

}
command . header . stamp=ros : : Time : : now ( ) ;
commandPublisher . publish ( command ) ;

}

With the information from the vehicle odometry it is possible to determine the trav-
elled distance and, consequently, the current node of the trajectory. Knowing that, this
executable only has to send the command message related to the actual node.

When the last node is reached, a message sends a stop command to the vehicle (0
m/s of speed and 0 radians of direction).

All the parking trajectories were defined in offline mode. Those were very similar,
changing only the steering angle, or the distance travelled.
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4.5 Mobile robot package

Generally, the search, planning and trajectory execution requires some cooperation and
exchange of information between nodes and packages. Due to that, the launching pro-
cess of the autonomous parking module must be well explained. The next sections will
describe the important details of the nodes to launch.

In this work, all the tasks were performed by the AtlasMV robot which already had a
developed communication module. The only thing needed to do was the code migration to
ROS, since this robot previously used another architecture, Carmen [CarmenTeam, 2012].

After the code migration, the fundamental structure of the “AtlasMV package” re-
mained the same, having a central node which is responsible to publish vehicle informa-
tion messages, like the odometry, and to treat the received command orders which will
actuate the motors.

4.5.1 Gamepad control and priority messages

It is possible to send control messages to the AtlasMV vehicle using a remote control
device. This advantage was used not only to control the robot on some simulation
situations, but also to implement a module responsible to perform the movement of the
vehicle when searching for an empty parking spot.

Since no search navigation module was created until the date, it was necessary to
generate a simple one that would enable the start of the robot movement. This would
emulate the situation when a driver passes next to a line of parked cars.

The created module makes that when the ‘Y’ button of the gamepad (figure 4.12)
is pressed, a control message of straight forward movement at a speed of 0.2 meters per
second is sent to the Atlasmv_base node.

Code section 4.8: Gamepad control message
void GamepadSearch ( i n t value , vo id∗parameters )
{

atlasmv_base : : AtlasmvMotionCommand command_local ;
i f ( value==1)
{

command_local . dir=0;
command_local . speed =0.2;
command_local . lifetime=INFINITY ;
command_local . priority=1;
command_local . header . stamp=ros : : Time : : now ( ) ;
commandPublisher . publish ( command_local ) ;

}
e l s e
{

command_local . dir=0;
command_local . speed =0.0;
command_local . lifetime =0.1;
command_local . priority=1;
command_local . header . stamp=ros : : Time : : now ( ) ;
commandPublisher . publish ( command_local ) ;

}
}

As it may be seen on the code presented in code section 4.8, a message of priority
1 is sent every time the ‘Y’ button is pressed or released. The use of priority numbers
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has the same effect on control messages as traffic lights have on traffic regulation. In
case multiple command messages arrive at the same time, the vehicle will respect the
one with higher priority.

The search module created publishes low priority messages. When a parking spot is
found, a command message to follow the parking manoeuvre is sent with a priority of 2,
so the vehicle will respect this message and ignore the forward search movement.

Pressing any other buttons of the gamepad activates a message with priority 3. These
buttons may act as an ‘emergency interrupt’, since the vehicle will ignore the previous
message and respect the new command.

Figure 4.12: Gamepad control buttons

After choosing the best trajectory to follow, the vehicle starts its movement, assuming
that all the action is being performed correctly due to the open loop control of the process.
However, the approach is compatible with changing environment conditions in case that
it can be monitored. In those situations new paths can be continuously recalculated.

4.5.2 AtlasMV launcher

Since the search for an empty parking spot assumes the utilization of a car, it is necessary
to launch the package that ensures the communication with the vehicle. In this case, this
is achieved by executing two different launch files, the pre_launch_atlasmv.launch and
the atlasmv_base.launch.

The first one is responsible to guarantee that all the vehicle connections are properly
made by doing a mapping of all the devices connected (e.g. gamepad).

The other launcher is the one which activates the remote control and the atlasmv_base
nodes allowing the control of the vehicle and the broadcast and subscription of some
informations messages.

With the use of these two launch files it is possible to obtain all the informations
needed to perform the point cloud reconstruction and to follow accurately the chosen
trajectory.
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4.6 Generated trajectories

After the initiation of the search module, and as soon as the node responsible to detect
empty parking spot locations send the coordinates message the process which will choose
the best trajectory to follow comes into operation.

The trajectory to follow is chosen from a large amount of trajectories possibilities
defined since the beginning of the search process. Those trajectories are created in a
way that they must converge into the same goal zone. Since the parking spot is always
detected approximately in the same region, in theory the approach trajectories may end
at a very similar position and orientation.

To define a trajectory there must be created two vectors of the same size. One for
the turning angle values (α, in degrees), and the other for the arc distance travelled with
that angle (arc, in meters). The α angle must be limited by the maximum turning angle
of the used vehicle, in this case that value was 21 degrees in each direction.

The trajectories generation was an iterative process, planning random parking ma-
noeuvres movements, and then overlap them with the reconstructed point cloud. When
a reasonable trajectory was found, some small variations were applied to other path
parameters, resulting a set of trajectories similar to the one on figure 4.13.

Figure 4.13: Some of the generated trajectories

The node responsible to evaluate all the trajectories weights chooses the one with
higher value. If this value is above a predetermined parameter (75% in this case) a
control message with priority number of 2 is sent.

4.7 Communication scheme

When performing the complete parking manoeuvre (search, plan and execution) there
are nodes from multiple packages exchanging information messages. A simplified scheme
of communications is shown on figure 4.14.
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Figure 4.14: Simplified Communication scheme

This types of schemes are very useful to understand the paths which messages follow
when a certain process is being executed.
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Chapter 5

Experimental results

When programming, all executable nodes must be tested experimentally to confirm the
results. There are always little details that are not perceptible on code writing but appear
to be evident on the field trials.

5.1 Vehicle odometry calibration

In order to reconstruct the point cloud of the surrounding environment and to follow
correctly the planned trajectories, the odometry information should be the most accurate
possible.

It was necessary to calibrate the odometry message sent by the AtlasMV vehicle,
since initially it was not very precise.

To achieve satisfactory results, the first test carried out was the speed calibration.
Here, the vehicle must travel in a straight line for four meters and the odometry should
exhibit the same movement. After a few attempts and some changes on the calibration
parameter, the result achieved was the one present on figure 5.1.

Figure 5.1: Straight forward motion to calibrate the odometry

Having reached a satisfactory straight line movement, it became necessary to cali-
brate the direction parameters. It was possible by controlling (manually) the vehicle in
a circular movement (clockwise and anticlockwise) and stop the vehicle in the same po-
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sition were the movement began. The odometry should confirm that the initial and final
position have the same coordinates and orientation. The results achieved (figure 5.2)
were very accurate, since the vehicle movement and the odometry information were in
an acceptable harmony.

(a) Clockwise movement (b) Anticlockwise movement

Figure 5.2: Final odometry calibration

5.2 Point cloud reconstruction

Since the horizontal field of view of the Kinect was too short to catch all the scene
information necessary to found a parking space, it was required to reconstruct the point
cloud while the vehicle was moving forward.

As it was said on section 3.2.3, the reconstruction was performed by an existing
package on the LAR’s server. The result of the reconstruction may be seen on figure 5.3.

(a) Scene to reconstruct (b) Reconstructed point cloud

Figure 5.3: Point cloud reconstruction

A small error on vertical walls was detected on all the reconstructions. This may occur
due to the large amount of information combined with small odometry imperfections,
resulting on the representation of the same obstacle in different positions.

These overlaps, on small scale vehicles like the AtlasMV, generate a considerable error
(± 0.20 m) but on full scale vehicles this error will not be so representative.
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5.3 Search for an empty parking spot

In order to begin the search for an empty parking spot, it was necessary to press the
gamepad ‘Y’ button which sent a message to the vehicle to move straight forward. If,
during the movement, the robot finds a parking spot, it sends a message which contains
an attractor point.

Usually, non-holonomic vehicles only fit into spaces with approximately 1.5 times its
length. However, the AtlasMV has a low limit on the turning angle (0.37 radians), so
the aimed parking spot should be at least 1.8 times bigger than the length of the car,
meaning the search for empty spots of 1.5 meters in length.

Since in this work a parking space is defined as something after another car (or
obstacle), there are two possibilities for parking situations: In front of a parked vehicle
(type I) and between to cars (type II).

The results of the search for an empty parking spot, in both situations are described
in the next subsections.

5.3.1 Type I parking situation

While moving forward, and analysing the point cloud which has been reconstructed, a
parking spot is found in the coordinates represented by the green sphere (figure 5.4).
These coordinates represent the position of the rear axle of the vehicle in the desired
position. The identified parking spot is in front of a vehicle, because the marker ahead
has no points inside it, meaning no obstacles in front of the possible parking space.

Figure 5.4: Parking detection - type I

5.3.2 Type II parking situation

This parking situation is similar to the described previously except for the fact that in
this case, the parking space found is between two vehicles (figure 5.5).
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Figure 5.5: Parking detection - type II

5.4 Processing time

As it was said on section 4.2, one of the advantages of using predefined paths (offline
planning) is the lower computational cost when compared to online planners. In the
present case, the computational time increases linearly with the number of generated
trajectories. The results achieved on the trajectories evaluation on a quad-core 2.80 Ghz
processor were the ones shown in figure 5.6.

Figure 5.6: Processing time on trajectories evaluation

The trajectories evaluation module is performed only one time per parking spot found,
making this process fast enough to perform a parking manoeuvre.
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5.5 Trajectories vs accuracy

Making a vehicle to follow a trajectory requires a very accurate and predictable odometry
information and vehicle control.

Since the AtlasMV robot was not built accordingly to the Ackerman model (fig-
ure 5.7), a small deviation between the trajectory planned and the executed due to the
front wheels skid was expected.

Figure 5.7: AtlasMV Ackeman angle

The test carried out to verify the ‘amount’ of trajectory deviation consisted of the
plan of a wide circular trajectory (diameter of four meters) and the overlap of the vehicle
odometry while completing the path. The test was performed with the robot lifted up
the ground, which made the wheels to spin freely without touching the ground. The
results are shown on figure 5.8.

Figure 5.8: Circular trajectory planed and executed (lifted up the ground)
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As expected, the results were very accurate, since the odometry was properly cali-
brated and the front wheels did not has the chance to skid because they were lifted. So
the next test to do was the same as the previous, but now with the vehicle on the floor.

The results were a little different from the first essay (figure 5.9).

Figure 5.9: Circular trajectory planed and executed (on the floor)

It was observed that robot performed a little wider trajectory than the one planned,
indicating skid from one of the front wheels. Another factor that may have contributed
to the trajectory disparity was a loose wheel support which made the left front wheel to
get off the path planned.

However, the results obtained only began to become less accurate at longer distances
travelled, so in short trajectories they should be good enough. Even in a long ‘S’ shaped
trajectory all the results were pretty accurate (figure 5.10).

Figure 5.10: ‘S’ shaped trajectory

On this king of trajectory, where there are an ample turning angle change, the tra-
jectory performed will not be composed by two tangent arcs. This is due to the fact that
when the change of direction occurs, the vehicle is still moving, generating a clothoid
shaped trajectory (figure 5.11). However, this effect is not noticeable if the manoeuvre
is performed at low speeds.
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Figure 5.11: Clothoid path[Nasa, nd]

5.6 Trajectory weights

To evaluate the generated trajectories, it was necessary to determine the weight that
each evaluation parameter should have on the final score.

For safety reasons, it was decided that the free space (FS) parameter, should be
multiplied by all the other parameters, and if a collision is detected it will turn the
global score of the trajectory to 0. Otherwise the trajectory will depend on the other
parameters weights.

In a first approach, the remaining three evaluation parameters were weighted equally,
33.3%. However, and after a few parking simulations, it became clear that the distance
to the attractive point (DAP) should be more important than the angular difference
(ADAP), since a parked vehicle may have small orientation deviations.

The DLO (distance to obstacles) parameter should have less weight than the other
two, because this parameter will only choose the trajectory which passes at a longer
distance from obstacles, and in parking manoeuvres, sometimes this is inevitable.

So, after empirical trials, the final results achieved were 40% for the DAP, 35% for
the ADAP and 25% for the DLO.

5.7 Parking manoeuvre

As soon as the attractive marker which represents a parking spot is received, some pre-
defined trajectories are generated on the current point of the vehicle. Those trajectories
were already established on a file which contained the information about the arc values
and the α angles.

After the generation, all trajectories are evaluated, and the one with the highest score,
if above 75%, is executed.

When the execution message starts to be followed, the trajectory search button (‘Y’
button of the gamepad) may be released, since from that moment there are messages
with higher priority.

The trajectory is perfectly followed at the desired speeds until the closest node. All
the small variations are due to some loose suspension, and a front end of the vehicle
which has not been built accordingly to the Ackerman model of a car.

On both types of parking manoeuvre the node responsible to the execution is the
same, being the obstacle locator the responsible to avoid a collision with the front car
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(in the case of a type II manoeuvre) by choosing another optional trajectory to follow.
On figure 5.12, it may be seen a type I parking manoeuvre, whereas figure 5.13

represents the second type.

Figure 5.12: Parking manoeuvre - type I

Figure 5.13: Parking manoeuvre - type II
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Chapter 6

Conclusions and Future Work

Nowadays, car brans are delivering to the market new types of aids to perform the parking
manoeuvre in a semi-autonomous way. So, it became clear that a fully autonomous car
should be capable to auto park itself.

The main goal of this work, which was the detection and execution of a parking
manoeuvre, was successfully achieved despite the small perception errors. The use of a
small scale vehicle was very useful, since the risk of collisions and equipment damage was
more controllable.

In respect to the command messages it became clear that the adopted philosophy
(messages with different priorities) has proved to be very useful in the management of
the commands to follow.

The trajectory planner approach revealed to be fast and quite accurate for the type
of required manoeuvre. The chosen path is followed in a ‘blind’ way, since there were
no sensors to control the rear empty space of the vehicle. However, if this information
was available, the trajectory monitoring and re-planing would be of easy implementation.
Another easy implementation task is the code migration in case of platform changing,
like the implementation of the autonomous manoeuvre on the Atlascar.

Since the parking manoeuvre is so vast, the execution of this work opened doors to
the realization of new tasks. Either for development or small corrections, all the tasks
that need to be done are extremely important to the ATLAS project integrity.

6.1 Parking search module

The search for a parking space assumes that there is a module responsible to direct the
attention from the road ahead to the parked cars on the side of it. This change of point
of interest may be called as the parking navigation module.

In this work, a very basic navigation module was created, to perform the parking
spot search. So, in order to explore the parking manoeuvre in all its potential a module
dedicated to the parking navigation should be created, keeping well located not only the
area of parked cars, but also the presence of traffic signs which could give informations
about the parking spot nature, or even parking regulations.
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6.2 Environment reconstruction

The Kinect point cloud reconstruction achieved on this work was not totally satisfactory,
since the reconstruction had errors on vertical walls. In order to perform a perfectly
‘clean’ parking manoeuvre, everything from the reconstruction to the execution must
be “perfect”, so the point_cloud_accumulator nodelet should be improved to assume
high rate information and a better correlation between the point clouds and the vehicle
odometry. If the errors pursuit, a new principle of reconstruction may be started, not from
the odometry information, but by merging the point clouds with obstacles comparison.

6.3 Steering optimization

The use of a small scale vehicle was very useful, not only to perform a few essays, but
also to simulate some manoeuvres with lower risk than if they were performed with a full
scale prototype. So, despite the existence of the Atlascar, the use of this ‘little’ robots
should continue.

There are however, a few improvements to be made on the AtlasMV vehicle. As it was
explained on section 5.5 this vehicle was not built accordingly to the Ackerman model of
a car, so the trajectories executed may be a little different from the ones planned.

To make this vehicle correct from the point view of Ackerman, there is only one
modification that needs to be done. The steering actuator must be replaced by one
which acts slightly to the outside than the current one (figure 6.1).

Figure 6.1: Corrected direction actuator position

Another correction to be made on the AtlasMV is the tune of the front suspension,
since there are some screws with small gaps, making all the front end of the car inaccurate.
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6.4 Empty parking space variations

In a parking manoeuvre it is very important to have a large range of options of which
final parked position the car should assume. In real live situations vehicles are not parked
always in the same configuration. So, it would be very useful to have a module which
allows the detection of several parking spots arrangements, like the perpendicular, angled,
and even in the side-walk when the situation demands so.

This module would make the search for an empty parking spot more vast and flexible,
being more reliable to the human being actions.

6.5 Code migration

Possibly, the essay which should generate more social impact would be the autonomous
parking manoeuvre applied to the full scale prototype, the Atlascar. This kind of ma-
noeuvre being performed by a full size vehicle shows that the process is closer to its final
phase. So, as soon as the gear box actuator of the Atlascar is ready, the code migra-
tion should start, since there are some parameters that demand some measurements and
essays to be fully operational.

This migration would close a cycle which started this year with the application of the
algorithm and manoeuvre to a small scale prototype.
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